About the World Steel Association

The World Steel Association (worldsteel) is one of the largest industry associations headquartered in Brussels, Belgium. It has a membership of approximately 170 steel producers, national and regional steel industry associations as well as steel research institutes. worldsteel members represent around 85% of world steel production. Members are private, public and state-owned steel companies whose steel production is based primarily on the basic oxygen or electric arc process routes. worldsteel’s mission is to act as the focal point for the steel industry, providing global leadership on all major strategic issues affecting the industry, particularly focusing on economic, environmental and social sustainability.

Sustainable Steel Policy and Indicators 2013

© World Steel Association 2013
ISBN 978-2-930069-75-3
Cover image: worldsteel
Design by double-id.com
The steel industry believes that sustainable development must meet the needs of the present without compromising the ability of future generations to meet their own needs. Member companies of the World Steel Association are committed to a vision in which steel is recognised as a key element of a sustainable world. This is achieved by a financially sound industry that takes leadership in environmental, social and economic sustainability. Table 1 shows the steel industry sustainable development policy, which was adopted in 2002 and built on a set of principles established in 1972, and a statement of principles issued in 1992.

<table>
<thead>
<tr>
<th>Focus area</th>
<th>We seek to develop sustainability and are committed to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value for stakeholders</td>
<td>Operate our businesses in an efficient and financially sustainable way in order to supply steel products and solutions that satisfy our customers’ needs and provide value to our stakeholders.</td>
</tr>
<tr>
<td>Environmental protection</td>
<td>Optimise the eco-efficiency of our products through the product life-cycle, including increased resource and energy efficiency in the production of steel and during the use of steel products. We are committed to the promotion of the recovery, reuse and recycling of steel.</td>
</tr>
<tr>
<td>Safety and health</td>
<td>Foster the well-being of employees in the steel industry and provide them with a safe and healthy working environment.</td>
</tr>
<tr>
<td>Local communities</td>
<td>Demonstrate social responsibility by promoting values and initiatives that show respect for the people and communities associated with our businesses.</td>
</tr>
<tr>
<td>Ethical standards</td>
<td>Conduct our business with high ethical standards in our dealings with employees, customers, suppliers and the community.</td>
</tr>
<tr>
<td>Stakeholder engagement</td>
<td>Engage our stakeholders and independent third parties in constructive dialogue to help fulfill our sustainable development commitments.</td>
</tr>
<tr>
<td>Disclosure and transparency</td>
<td>Build on our knowledge of sustainability and willingly share it with others. We will be open and active in our communications and help steel companies and organisations in the supply chain to implement sustainable practices.</td>
</tr>
</tbody>
</table>

Table 1: Steel industry sustainable development policy
SUSTAINABILITY REPORTING
A dynamic and ongoing process

Reporting period

This brochure, which is published annually, is dedicated to our stakeholders. It is the result of a joint effort between our members and steel associations, as well as non-member steel companies. Our aim is to inform the public about the steel industry’s environmental, social and economic performance measured by a set of 8 selected indicators. This issue compiles data from 2003 to 2012, for most indicators, to show trends of the steel industry sustainability performance over a decade.

Scope and companies' participation

We are one of the few industries that report at a global level and have done so since 2004, when the first sustainability report was published. At the same time, we are aware of the challenges of collecting the data globally, particularly with regards to reporting coverage and scope, as some reporting companies cannot collect all the data requested. Moreover, steel companies differ in several ways in terms of size, production processes, reporting format and type of ownership. The scope of the sustainability report is steel plant sites for the environmental and social indicators and consolidated financial data for the economic indicators.

The coverage over the years reflects the steel industry’s commitment and dedication to sustainability reporting. Companies’ reporting is voluntary. In 2005, 35 steel companies participated voluntarily with a rise to 92 companies in 2012. The increase in participation is not equal across all indicators and companies’ are encouraged to continue their participation, or start to contribute, as it allows them to monitor and improve their performance.

Coverage in terms of crude steel production and revenue

Every year our aim is to increase global tonnage coverage and the number of companies reporting to gain further commitment to make a change. In 2012, crude steel produced by companies (consolidated tonnage) who reported on one or more indicators was 641 mmt representing 41% of global crude steel production tonnage. Revenue generated by the companies reporting financial data was US$642.8 representing 34% of global steel production tonnage.

Reporting and verification process

The sustainability indicator data is collected every year from member companies, steel associations and non-members. Worldsteel has developed common definitions and methodologies applicable to all reporting companies. The data provided are reviewed and verified by worldsteel staff to ensure the accuracy and consistency of figures. The results presented in this brochure are representative to observe general performance trends. This publication is released every year in October at worldsteel’s annual conference. The graphs in Figures 1 to 4 combine two different data sets (with different scales) to observe overall trends in the indicators results. The graphs illustrate how the indicator results have changed over the years.
We will continue to encourage our members, steel associations and non-member steel companies to participate voluntarily in this initiative that benefits both the industry as a whole, as well as individual companies who compare their performance. Sustainability reporting at a global level is one of the major efforts that the steel industry undertakes to manage its performance, demonstrate its commitment to sustainability, enhance transparency and show responsibility in dealing with global challenges. It is also a way to be accountable to our stakeholders.

Environmental performance – Greenhouse gas emissions and energy intensity

Indicator 1: Greenhouse gas emissions (CO₂)
Indicator 2: Energy intensity

Figure 1 shows the performance trends of greenhouse gas emissions (i.e. CO₂) and the energy intensity of the steel industry. The average values of CO₂ and energy consumption remained stable from 2005 to 2010. The values for 2012 are preliminary, as data collection is still in progress. CO₂ and energy consumption are positively correlated, and the correlation coefficient of 0.6 indicates a strong degree of association. Therefore, as energy intensity decreases the emissions from the fuel used creating CO₂ also decreases. One major challenge for the steel industry is the reduction of CO₂ emissions from steelmaking, as they are closely related to the amount of carbon necessary for the reduction of iron ore in the blast furnaces. Modern production processes are close to their theoretical minimum of CO₂, and there is currently no large-scale commercially available substitute for carbon in ironmaking.

Note: Indicators 1 and 2 are calculated using route-specific energy and CO₂ intensities for three steel production routes: basic oxygen furnace, electric arc furnace and open hearth furnace. The results for 2012 are preliminary as data collection is in progress. The indicators are also weighted based on the production share of each route. Indicator 1 includes CO₂ emissions only as these make up approximately 93% of all steel industry greenhouse gas emissions. In Figure 1, data prior to 2005 are not disclosed, as the calculation methods for both indicators (1 and 2) were different. The values for CO₂ emissions and energy intensity from 2003 to 2004 can be found in the worldsteel 2004 and 2005 sustainability reports.
In terms of energy consumption, a study conducted by worldsteel shows that steel companies from North America, Japan and Europe have reduced their energy consumption per tonne of steel produced by 50% over a 30-year period. This finding suggests that production technologies for steelmaking are already very efficient. However, considering that the energy intensity of every company notably varies, due to the different technologies used in steelmaking, there is still potential for improvements to be made. Table 2 shows that since 2003 the number of companies reporting on CO₂ emissions and energy intensity has increased.

The steel industry is committed to exploring new possibilities to achieve further reductions in CO₂ emissions and energy consumption. Member companies have been actively working in several programmes and initiatives conducted by worldsteel. These include the CO₂ breakthrough co-ordination programme initiated in 2003 to exchange information about carbon-lean steel production technologies, the CO₂ data collection programme established in 2008, the Climate Action Recognition Programme launched in 2009 and the development of a common methodology to measure CO₂ emissions in steel plants, published in 2013 as an International Standard – ISO 14404:2013, entitled Calculation method of carbon dioxide emission intensity from iron and steel production. Another approach to CO₂ emissions reduction is through the development and implementation of innovative solutions that reduce emissions during the life cycle of steel products. Advanced high-strength steels (AHSS) enable less steel to be used in cars reducing fuel consumption, thus making possible a reduction in total life-cycle greenhouse gas emissions of nearly 70%.

For more information on GHG emissions in the steel industry see the worldsteel LCA Methodology Report at: worldsteel.org/steel-by-topic/life-cycle-assessment

For more information on the new global guidelines for Advanced High-Strength Steels Application (AHSS) – Version 4.1 see: worldsteel.org/projects/ahss-guidelines

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>38</td>
<td>49</td>
<td>45</td>
<td>51</td>
<td>52</td>
<td>N/A</td>
</tr>
<tr>
<td>Energy</td>
<td>26</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>38</td>
<td>49</td>
<td>45</td>
<td>51</td>
<td>52</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 2: Number of reporting companies on CO₂ emissions and energy intensity per year

Note: 2012 values are not available as data collection is in progress
Indicator 3: Material efficiency
Indicator 4: Environmental management systems (EMS)

The steel industry’s goal is to achieve zero waste. The material efficiency indicator calculates the percentage of crude steel and byproduct material from total output material (i.e. crude steel, byproducts and waste landfilled or incinerated). Figure 2 shows that the material efficiency indicator remained relatively stable between 2005 and 2010. In 2012, the data provided by worldsteel members indicated that 96% of the material used was converted to crude steel and by-products. The results indicate that the amount of waste is small, compared to the material that is used. Fluctuation during 2011 and 2012 is likely due to a variation in the group of reporting companies. As more companies make use of byproducts generated during steelmaking, such as slag, the amount of waste landfilled will be reduced, which implies a positive development for steel companies, users of slag and the environment.

Environmental management systems help to improve companies’ environmental performance and increase operating efficiency. Steel plants register to ISO 14001, EMAS and/or other country-specific standard. The EMS indicator measures the number of employees and contractors working in registered steel production facilities. In 2012, the data provided by member companies revealed that 89% of all employees and contractors worked in EMS-registered production facilities. Figure 2 shows an increasing trend of the EMS indicator between 2005 and 2011. It is expected that, in the coming years, this trend will continue as new and stricter regulations are enforced in countries around the globe. A number of steel member companies achieved 100% steel plants certification. This means that all of their employees & contractors work in certified production facilities. Table 3 shows the number of reporting companies from 2003 to 2012. Overall, the number of companies reporting on material efficiency and environmental management systems has increased over the years.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material efficiency</td>
<td>25</td>
<td>27</td>
<td>27</td>
<td>31</td>
<td>25</td>
<td>26</td>
<td>36</td>
<td>38</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>EMS</td>
<td>26</td>
<td>34</td>
<td>31</td>
<td>35</td>
<td>25</td>
<td>27</td>
<td>36</td>
<td>42</td>
<td>44</td>
<td>43</td>
</tr>
</tbody>
</table>

Table 3: Number of reporting companies on material efficiency and EMS per year
Safety and health is a top priority for the steel industry. Preserving the life and health of employees is fundamental to sustainability. Worldsteel measures safety by the number of injuries per million hours worked. A lost-time injury is an incident that causes an injury that prevents a person from returning to his next scheduled shift or work period. Figure 3 shows a steady and notable decline in the number of injuries since 2005. This suggests that steel companies have significantly improved their safety and health performance. In 2012, the average result for LTIFR was 1.6. Worldsteel has published a handbook called Accident-Free Steel and, through its working group on safety and health, collects safety data every year. Companies are encouraged to participate in the safety survey and benchmark their annual results. This is a way for companies to manage their performance and show their leadership commitment to a safe working environment for all employees and contractors. Table 4 shows a notable increase in the number of companies reporting on safety since 2003.

For information on the Safety and Health Excellence Recognition Programme see: worldsteel.org/publications/bookshop.html

The steel industry is committed to offering employees the opportunity to further their education and develop their skills. Employee training refers to instruction provided to enhance the skills, capabilities and knowledge of employees. Training may involve various types of programs such as classroom instruction, computer-based training, or on-the-job instruction. Employee training measures the total days of training per employee. Note that employee training does not focus on safety and health, but may include it. In 2012, members of the steel industry reported 8.1 days of training per employee. The results for employee training shown in Figure 3 show fluctuation and overall a decreasing trend. Table 4 shows also some fluctuation and a steady increase in the number of companies reporting on training between 2007 and 2011. The results suggest that there seems to be room for improving the value of this indicator.

Steel companies around the world face a shortage of talent in fields such as metallurgy, materials science, physics, chemistry, engineering and mathematics. Worldsteel strives to close this gap in the industry through the steeluniversity programme, which is a successful initiative launched in 2003. Steeluniversity provides innovative e-learning resources on steel technologies and interactive simulations of the main steelmaking operations. Every year since 2005, participants of the steeluniversity Challenge compete against other teams and individuals in a 24-hour worldwide virtual steelmaking competition.

For more information on steeluniversity see: steeluniversity.org

Table 4: Number of reporting companies on LTIFR and employee training per year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LTIFR</td>
<td>26</td>
<td>35</td>
<td>33</td>
<td>36</td>
<td>44</td>
<td>41</td>
<td>64</td>
<td>90</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>Training</td>
<td>25</td>
<td>33</td>
<td>28</td>
<td>31</td>
<td>24</td>
<td>26</td>
<td>33</td>
<td>38</td>
<td>39</td>
<td>38</td>
</tr>
</tbody>
</table>

For more information, see: steeluniversity.org
Indicator 7: Investment in new processes and products

Indicator 8: Economic value distributed (EVD)

Table 5: Number of reporting companies on investment in processes and products, and EVD per year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Investments*</td>
<td>31</td>
<td>35</td>
<td>34</td>
<td>36</td>
<td>31</td>
<td>32</td>
<td>38</td>
<td>41</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>EVD</td>
<td>22</td>
<td>22</td>
<td>16</td>
<td>18</td>
<td>24</td>
<td>25</td>
<td>34</td>
<td>37</td>
<td>42</td>
<td>42</td>
</tr>
</tbody>
</table>

*Investment in new processes and products

Figure 4: Investment in new processes and products and economic value distributed (EVD)

Note: Indicator 8 (EVD) quantifies the value distributed to society and includes operating costs (payments to suppliers, contractors, etc.), employee wages and benefits, dividends paid to all shareholders, interest payments made to providers of loans, payments to government (gross taxes and royalties), and community investments (voluntary contributions and investments of funds in the broader community, including donations and scholarships, etc.). Figure 4 does not disclose data for EVD prior to 2007 as this indicator was measured and named differently. Data for value added from 2003 to 2006 can be found in the worldsteel 2004, 2005 and 2008 sustainability reports.

Investment in new processes and products measures the value of capital expenditure, and research and development expressed in percentage of revenue. Capital expenditure refers to money used to acquire or improve long-term assets such as property, plants, and equipment. Research and development refers to money used with the prospect of gaining new scientific or technical knowledge to develop new products, processes, and services. Figure 4 shows a steady increase in investment in new processes and products between 2003 and 2009. A decrease in investment is notable, particularly during 2010 and 2011, likely due to the effects of the financial crises that started in 2008, which affected economies directly and indirectly throughout the globe. One can observe a significant increase in 2012, compared to 2011 and 2010. Member companies reported an average value of 10% of investments in new processes and products from annual revenue. The large increase in investment in new processes and products in 2012 is likely due to increased consolidation and a gradual financial recovery.

With regards to economic value distributed (EVD), Figure 4 shows an increase from 2008 to 2012. EVD remained relatively stable between 2009 and 2011, which was a challenging period for steel companies in terms of financial performance. In 2012, steel companies reported 97% of economic value distributed to society expressed in percentage of revenue. This figure represents the contribution of the steel industry (direct and indirect) to society captured in various forms such as community investments, taxes and royalties paid, shareholder dividends and employee wages and salaries. Direct contributions to society include the provision of infrastructure such as hospitals, roads, housing and services such as education and health care and pensions. Indirect contributions are made through taxes and other levies paid to government. The correlation coefficient of investment in new processes and products, and economic value distributed is 0.6 (from 2007 to 2012), which indicates a strong degree of association. Table 5 shows that, from 2007 to 2011, there was a steady increase in the number of reporting companies for both indicators.

For more information about the global steel industry, go to: worldsteel.org/steel-by-topic/economics.html

ECONOMIC PERFORMANCE

Investments and economic value distributed to society
Table 6 shows the summary of the indicator average results from 2007 to 2012.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Greenhouse-gas emissions</td>
<td>Tonnes CO₂/tonne crude steel cast</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7*(p)</td>
</tr>
<tr>
<td>2 Energy intensity</td>
<td>GJ/tonne crude steel cast</td>
<td>20.8</td>
<td>20.8</td>
<td>20.1</td>
<td>20.7</td>
<td>19.6</td>
<td>19.6*(p)</td>
</tr>
<tr>
<td>3 Material efficiency</td>
<td>Percentage of material converted to products and by-products</td>
<td>97.9</td>
<td>98.0</td>
<td>97.9</td>
<td>97.7</td>
<td>94.4</td>
<td>96.4</td>
</tr>
<tr>
<td>4 Environmental management systems (EMS)</td>
<td>Percentage of employees and contractors in EMS-registered production facilities</td>
<td>85.1</td>
<td>86.6</td>
<td>89.0</td>
<td>88.5</td>
<td>89.9</td>
<td>89.3</td>
</tr>
<tr>
<td>Social sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Lost time injury frequency rate</td>
<td>Injuries/million hours worked</td>
<td>4.5</td>
<td>3.1</td>
<td>2.5</td>
<td>2.3</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>6 Employee training</td>
<td>Training days/employee</td>
<td>11.1</td>
<td>8.0</td>
<td>8.5</td>
<td>6.7</td>
<td>7.7</td>
<td>8.1</td>
</tr>
<tr>
<td>Economic sustainability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Investment in new processes and products</td>
<td>Percentage of revenue</td>
<td>7.9</td>
<td>8.3</td>
<td>10.2</td>
<td>8.8</td>
<td>8.3</td>
<td>10.4</td>
</tr>
<tr>
<td>8 Economic value distributed</td>
<td>Billion US$</td>
<td>323.8</td>
<td>308.3</td>
<td>470.7</td>
<td>477.0</td>
<td>617.9</td>
<td>642.8</td>
</tr>
<tr>
<td></td>
<td>Percentage of revenue</td>
<td>83.0</td>
<td>68.2</td>
<td>92.3</td>
<td>91.7</td>
<td>93.1</td>
<td>97.4</td>
</tr>
</tbody>
</table>

Table 6: Summary of indicator results

Note: *(p) = preliminary; data collection in progress*

End Notes

1 The selected indicators were developed by worldsteel members in consultation with external organisations. They are applicable to steel companies worldwide.
2 Due to changes in the methods of calculation undertaken in 2004 and 2006, the average results of a few indicators (i.e. CO₂, energy intensity and EVD) differ prior to 2005 and 2007. Therefore, those results are not disclosed in Figures 1 and 4. However, data for these 3 indicators are available in the worldsteel 2004, 2005 and 2008 sustainability reports.
3 The indicator employee training includes production and non-production facilities.
5 There is no association between pairs of indicators unless otherwise stated.
7 *Sustainable steel – At the core of a green economy*, 2012. Retrieved on 22 August from worldsteel.org/publications/bookshop.html
CONTRIBUTING ORGANISATIONS AND ASSOCIATIONS

The 92 organisations and four associations listed below provided data for one or more of the 2012 indicators.

1 Acciaieria Arvedi SpA
2 Acciaierie Bertoli Safau S.p.A.
3 ACERINNOX S.A.
4 Aichi Steel Corporation
5 Altos Hornos de México, S.A.B. de C.V. (AHMSA)
6 Anshan Iron & Steel Group Corporation
7 Aperam South America
8 Aperam Stainless
9 Aperam Stainless Europe
10 ArcelorMittal
11 Arrium Limited (formerly OneSteel Limited)
12 Badische Stahlwerke GmbH (+)
13 Baoshan Iron & Steel Co., Ltd. Stainless Steel Business Unit
14 Baosteel Group Corporation
15 BlueScope Steel Limited
16 Byelorussian Steel Works
17 CAP Acero (Compañía Siderúrgica Huachipato)
18 CELSA Group (+)
19 China Steel Corporation
20 Daido Steel Co., Ltd.
21 DEACEURO, S.A. de C.V.
22 Deutsche Edelstahlwerke GmbH (DEW)
23 Dillinger Hüttenergie AG
24 Dongjou Steel Co. Ltd.
25 Dongkuk Steel Mill Co., Ltd.
26 Eregli Demir ve Çelik Fabrikaları TAS (Eregli Iron and Steel Works, Co.)
27 Essar Steel Ltd.
28 Euron Group
29 EZZ Steel
30 Georgsmarienhütte Holding GmbH
31 Gerard Aços Especiais
32 Gerard S.A.
33 Halyvourgiki Inc.
34 Hüttenerwerke Krupp Mannesmann GmbH (HKM)
35 HYUNDAI Steel Company
36 INOXUM Acciai Speciali Terni S.p.A. (AST)
37 INOXUM Mexvich S.A. de C.V
38 INOXUM Nirosta GmbH
39 INOXUM Shanghai Krupp Stainless (SKS)
40 INOXUM USA Calvert
41 ISDEMR-Ikmediumi S.A.
42 JFE Steel Corporation
43 Jindal Stainless Ltd
44 Jindal Steel and Power Limited (JSPL)
45 JSW Limited
46 Kobi Steel, Ltd
47 Magnitogorsk Iron & Steel Works
48 Metinvest Holding LLC
49 NatSteel Holdings Pte Ltd
50 Nedstaal B.V.
51 Nippon Kiriniku Co., Ltd.
52 Nippon Steel and Sumitomo Metal Corporation (*)
53 Nippon Yakin Kogyo Co., Ltd.
54 Nishin Steel Co., Ltd.
55 Novolipetsk Steel (NLMK)
56 Nucor Corporation
57 Outokumpu Oyj
58 Ovako Holdings AB
59 POSCO
60 POSCO-Thainox Public Company Limited
61 Qatar Steel Company (Q.S.C.)
62 Rashtriya Ispat Nigam Ltd (VISAG Steel)
63 Rautaruukki Oyj
64 Saarstahl AG
65 SABC-Saudi Basic Industries Corporation (HADEED)
66 Sahaviriya Steel Industries Public Company Ltd. (SSI)
67 Salzgitter AG Stahl und Technologie
68 Schmolz + Bickenbach Group (+)
69 SeAH Besteel Corporation
70 Severstal JSC
71 Shikro Metals & Technologies Limited (SMTL)
72 SIDENOR S.A.
73 SSAB AB
74 Steel Authority of India Ltd. (SAIL)
75 Tang Eng Iron Works Co. Ltd.
76 Tata Steel Group
77 Tata Steel Europe
78 Tata Steel Limited
79 Techint Group (Tenaris & Terrion)
80 The Timken Company
81 ThyssenKrupp AG
82 Tinecke Zelezarny, a.s.
83 Tung Ho Steel Enterprise Corporation
84 UGITECH SA
85 United States Steel Corporation
86 Usohais Siderúrgicas de Minas Gerais S.A. (USIMINAS)
87 Vallourec (+)
88 voestalpine AG
89 voestalpine Edelstahl GmbH
90 Votrantrim Siderurgia
91 Walin Lihwa Corp., Yenshuei Plant
92 Yieh United Steel Corporation (YUSCO)

Contributing associations

1 Asociación Latinoamericana del Acero (Alacero)
2 Association of the Hungarian Steel Industry (AHSI)
3 South East Asia Iron and Steel Institute (SEAISI)
4 Wirtschaftsvereenigung Stahl (German Steel Federation – VDEh)

(*) Nippon Steel Corporation and Sumitomo Metal Industries, Ltd. were merged in October 2012 and now bear a new name, Nippon Steel & Sumitomo Metal Corporation.

(+ Member companies which, as of 2013, increased their indicator reporting coverage.